Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 43(2): 767-781, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34449532

RESUMO

KIN (Kin17) protein is overexpressed in a number of cancerous cell lines, and is therefore considered a possible cancer biomarker. It is a well-conserved protein across eukaryotes and is ubiquitously expressed in all cell types studied, suggesting an important role in the maintenance of basic cellular function which is yet to be well determined. Early studies on KIN suggested that this nuclear protein plays a role in cellular mechanisms such as DNA replication and/or repair; however, its association with chromatin depends on its methylation state. In order to provide a better understanding of the cellular role of this protein, we investigated its interactome by proximity-dependent biotin identification coupled to mass spectrometry (BioID-MS), used for identification of protein-protein interactions. Our analyses detected interaction with a novel set of proteins and reinforced previous observations linking KIN to factors involved in RNA processing, notably pre-mRNA splicing and ribosome biogenesis. However, little evidence supports that this protein is directly coupled to DNA replication and/or repair processes, as previously suggested. Furthermore, a novel interaction was observed with PRMT7 (protein arginine methyltransferase 7) and we demonstrated that KIN is modified by this enzyme. This interactome analysis indicates that KIN is associated with several cell metabolism functions, and shows for the first time an association with ribosome biogenesis, suggesting that KIN is likely a moonlight protein.


Assuntos
Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Células Cultivadas , Humanos , Neoplasias/genética , Neoplasias/patologia , Proteínas Nucleares/metabolismo , Mapas de Interação de Proteínas , Splicing de RNA
2.
Eur Biophys J ; 48(7): 645-657, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31309277

RESUMO

The DNA/RNA-binding KIN protein was discovered in 1989, and since then, it has been found to participate in several processes, e.g., as a transcription factor in bacteria, yeasts, and plants, in immunoglobulin isotype switching, and in the repair and resolution of double-strand breaks caused by ionizing radiation. However, the complete three-dimensional structure and biophysical properties of KIN remain important information for clarifying its function and to help elucidate mechanisms associated with it not yet completely understood. The present study provides data on phylogenetic analyses of the different domains, as well as a biophysical characterization of the human KIN protein (HSAKIN) using bioinformatics techniques, circular dichroism spectroscopy, and differential scanning calorimetry to estimate the composition of secondary structure elements; further studies were performed to determine the biophysical parameters ΔHm and Tm. The phylogenetic analysis indicated that the zinc-finger and winged helix domains are highly conserved in KIN, with mean identity of 90.37% and 65.36%, respectively. The KOW motif was conserved only among the higher eukaryotes, indicating that this motif emerged later on the evolutionary timescale. HSAKIN has more than 50% of its secondary structure composed by random coil and ß-turns. The highest values of ΔHm and Tm were found at pH 7.4 suggesting a stable structure at physiological conditions. The characteristics found for HSAKIN are primarily due to its relatively low composition of α-helices and ß-strands, making up less than half of the protein structure.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Filogenia , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Fenômenos Biofísicos , Dissulfetos/química , Regulação da Expressão Gênica , Humanos , Modelos Moleculares , Agregados Proteicos , Estrutura Secundária de Proteína , Temperatura
3.
RNA Biol ; 16(3): 330-339, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30666901

RESUMO

Non-coding Y RNAs and stem-bulge RNAs are homologous small RNAs in vertebrates and nematodes, respectively. They share a conserved function in the replication of chromosomal DNA in these two groups of organisms. However, functional homologues have not been found in insects, despite their common early evolutionary history. Here, we describe the identification and functional characterization of two sbRNAs in Drosophila melanogaster, termed Dm1 and Dm2. The genes coding for these two RNAs were identified by a computational search in the genome of D. melanogaster for conserved sequence motifs present in nematode sbRNAs. The predicted secondary structures of Dm1 and Dm2 partially resemble nematode sbRNAs and show stability in molecular dynamics simulations. Both RNAs are phylogenetically closer related to nematode sbRNAs than to vertebrate Y RNAs. Dm1, but not Dm2 sbRNA is abundantly expressed in D. melanogaster S2 cells and adult flies. Only Dm1, but not Dm2 sbRNA can functionally replace Y RNAs in a human cell-free DNA replication initiation system. Therefore, Dm1 is the first functional sbRNA described in insects, allowing future investigations into the physiological roles of sbRNAs in the genetically tractable model organism D. melanogaster.


Assuntos
Drosophila melanogaster/genética , RNA não Traduzido/genética , Animais , Drosophila melanogaster/classificação , Perfilação da Expressão Gênica , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , RNA não Traduzido/química , Transcriptoma
4.
BMC Mol Biol ; 17: 1, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26733090

RESUMO

BACKGROUND: The genes coding for Y RNAs are evolutionarily conserved in vertebrates. These non-coding RNAs are essential for the initiation of chromosomal DNA replication in vertebrate cells. However thus far, no information is available about Y RNAs in Chinese hamster cells, which have already been used to detect replication origins and alternative DNA structures around these sites. Here, we report the gene sequences and predicted structural characteristics of the Chinese hamster Y RNAs, and analyze their ability to support the initiation of chromosomal DNA replication in vitro. RESULTS: We identified DNA sequences in the Chinese hamster genome of four Y RNAs (chY1, chY3, chY4 and chY5) with upstream promoter sequences, which are homologous to the four main types of vertebrate Y RNAs. The chY1, chY3 and chY5 genes were highly conserved with their vertebrate counterparts, whilst the chY4 gene showed a relatively high degree of diversification from the other vertebrate Y4 genes. Molecular dynamics simulations suggest that chY4 RNA is structurally stable despite its evolutionarily divergent predicted stem structure. Of the four Y RNA genes present in the hamster genome, we found that only the chY1 and chY3 RNA were strongly expressed in the Chinese hamster GMA32 cell line, while expression of the chY4 and chY5 RNA genes was five orders of magnitude lower, suggesting that they may in fact not be expressed. We synthesized all four chY RNAs and showed that any of these four could support the initiation of DNA replication in an established human cell-free system. CONCLUSIONS: These data therefore establish that non-coding chY RNAs are stable structures and can substitute for human Y RNAs in a reconstituted cell-free DNA replication initiation system. The pattern of Y RNA expression and functionality is consistent with Y RNAs of other rodents, including mouse and rat.


Assuntos
Replicação do DNA , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , RNA não Traduzido/química , RNA não Traduzido/genética , Animais , Linhagem Celular , Simulação por Computador , Cricetulus , Regulação da Expressão Gênica , Genoma , Ligação de Hidrogênio , Modelos Moleculares , Relação Estrutura-Atividade
5.
Mol Biosyst ; 11(3): 801-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25521575

RESUMO

The small noncoding group of RNAs called stem-bulge RNAs (sbRNAs), first reported in Caenorhabditis elegans, is described as molecules homologous to the Y RNAs, a specific class of noncoding RNAs that is present in vertebrates. This homology indicates the possibility of the existence of sbRNAs in other invertebrate organisms. In this work, we used bioinformatic tools and conserved sequences of sbRNAs from C. Elegans and Y RNAs to search for homologous sbRNA sequences in the Bombyx mori genome. This analysis led to the discovery of one noncoding gene, which was translated into RNA segments and comparatively analysed with segments from human and hamster Y RNAs and C. elegans sbRNAs in molecular dynamic simulations. This gene represents the first evidence for a new sbRNA-like noncoding RNA, the BmsbRNA gene, in this Lepidoptera genome.


Assuntos
Bombyx/genética , Genoma de Inseto , RNA não Traduzido/genética , Animais , Sequência de Bases , Biologia Computacional , Sequência Conservada , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Matrizes de Pontuação de Posição Específica , RNA não Traduzido/química , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...